if student_grade < 40:
print(“Failed!”)

This week we looked at selection, and how we can
utilise selection in Python through the if statement. else:

We learned that by using an if, we run one bit of print(“Passed!”)
code or another depending on some kind of

condition. We also learned about relational
operators and logical operators, but more on that —
later.

An if statement works by testing some kind of

condition, and based on that, running some code.

This means we can conditionally do things. For

example, we may want to only print out “Failed!” if

(and ONLY if) a student’s grade is below 40%. ves Nope

We also learned about the else keyword and how
it essentially means “otherwise”. The else keyword
allows us to run code if the condition is not
satisfied.

0 Experiment with if-else in Python:

1. Try the example in the top-right of this page. Make a variable called student_grade,
and test if that value is less than 40. If it is, show “you failed”, otherwise show “you
passed”. Try it out with student_grade = 90 and student_grade = 10. What do you

get?

2. Create a program which will show “boiled!” if a variable temperature is more than 99.
Otherwise, show “boiling”.

3. Make a program which tests if a variable input_text is equal to “hello”. If it is, print out
“hello there!”

4. Expand this to encompass other phrases, like: “how are you?”, “goodbye”, “how old are

you?” and “what’s your name?”.

5. Expand this even further to let the user type in their text, rather than setting it directly
in the code. Look up “python input function” for more information, or rewatch this
week’s talk (at the end) where we discuss the input() function.

Another thing we looked at was logical operators.
Before we talk about these, we’ll consider
relational operators. “Relational” operators are
operators which compare two things. For example,
if we wrote that a < 5, the relational operator here
. No: they're not

is “<”. This is because it is comparing if a is less Yes: they're 18 e

than 5 -- a relationship. LIRS have £16

Logical operators are similar, but fundamentally
different. There are three logical operators: and,
or and not. Logical operators allow us to build
complex conditions where something AND
something else has to be true, or if something OR
something else is true. Here the and & or
operators can be used respectively. For example,
using the and operator, we could test if a variable
money is more than 15 and another variable age is
more than 17. This process would allow us to
age-restrict purchases. Conditions with a logical
operator are sometimes referred to as “compound
conditions”. print(“Can I see your ID pls”);

The and/ or operators are also useful for if money > 15 and age >= 18:

print(“Here’s a knife!”)

checking if a variable is within a certain range.
Finally, the not operator allows it to test the

inverse: if something is NOT true. else:

print(“Nope, get out”)

0 Experiment with logical operators in Python:
1. Implement the example seen above. Don’t forget: you need to make the money and
age variables!
2. Create a basic working discount system. Make a variable called bill and set it to 50.

Make two other variables is_staff and has_discount_code and set both to True initially.
Then, write an if statement which will test if either of these is true (using the OR
operator), and if so, will give them a discount of 25%. Then, print out the final bill.

a. What happens if you change one of these variables to False?

b. What happens if you use the AND operator instead of the OR operator?

c. What happens if you use the NOT operator before the condition?

d. Can you expand this to test if a person has enough money?

3. Make a variable called value and set it to 5. Without using the > or >= operators, can
you test if value is more than 57 (hint: value > 5 is true if value <= 5 is not true. The <
and > operators can be thought of like opposites)

4. Can you write a program to accept a username and password from the user, and test if
both their username is “admin” and password is “1234”, showing “Access Granted” if
this condition is true?

if request == “Limerick”:
print(“There once was a man from Peru”)
print(“Who dreamed he was eating a shoe”)
print(“He awoke with a fright") You might have realised that the lines Python runs

print(“In the middle of the night") in an if statement have a space before them. Why
print(“To find his dream had come true”)

is this? Well, we call this process of putting a space
before the line indentation. We “indent” code using
the TAB key on the keyboard.

Why is it needed? The answer is because we need

if password_attempts < 5: some way of telling Python which bit of code we
print(“Unable to log in.") want to conditionally run. Otherwise Python gets
password_attempts += 1 confused and doesn’t know if you want to run a

line of code based on the condition. The way of

print(“You cannot try again.”) clarifying this is by putting a space before the line!

else:

So far we've looked at if statements with just one
line of code “inside” them. But actually, we can run
anything inside of an if statement. Some examples
can be seen to the left.

This is similar to the example on the previous

page, but without logical operators We can even have an if statement inside another if

if money > 15: statement! In that case, we would have indent code
print(“You have enough money!") inside the first if ONE time, and TWO times for the
if age > 18: . second if.
print(“You can buy a knife")
else:
print(“.. but you’'re not 18") This is related to something referred to as “scope”.

We will touch on scope in either the next week, or

print(“You don’t have enough money”) week after, so don’t worry if it's confusing!

0 Experiment with indentation in Python:
1. Try out some of the example above. Test them thoroughly and understand how they
work.
2. Write a simple if statement testing some condition of your choice. If this condition is

satisfied, print out “yay”. Test it and make sure it runs the code if the condition is
satisfied. Then:

a. Try removing the space before print. What happens? Do you get an error?
Why do you think this is?
b. Add another print statement below the first one, and make sure they’re both

indented once. Test to see if it works. What happens if you remove the space
before the second print? Does it run? Why?

C. Test this out and see what happens if the second message is shown. If it
does, why is this?
3. Write a “nested” if statement: an if statement within another if statement. Pay close

attention to the indentation and ensure you have the correct level of indentation for
each line. Can you go one step further? An if statement within an if statement, within
an if statement?

Hang on, where’s elif?

For those of you with some previous programming knowledge, you might
have noticed we left out the elif keyword. The if, else and elif keywords
are all related, but we didn’t have time to discuss what an elif is, or what it
does. So stay tuned for next week where we’ll touch on what an elif is,
and how it can be used!

NEXT WEEK:
GETTING LOOPY

